stress =
$$(0.95 \times 0.9)/1.4 - 1.4 \times 0.09$$

(proportionally reduced from (12.18))
= $0.61 - 0.126 = 0.484 \text{ N/mm}^2$ (no tension) (12.20)

• Leeward side

$$dead + wind = 1.4 G_k + 1.4 W_k \tag{12.21}$$

stress =
$$0.95 + 0.126 = 1.08 \,\text{N/mm}^2$$
 (12.22)

(iii) Dead, imposed and wind loads

dead + imposed + wind =
$$1.2 G_k + 1.2 Q_k + 1.2 W_k$$
 (12.23)
stress = $(0.95 \times 1.2)/1.4 + (1.2 \times 0.20)/1.6 \pm 1.2 \times 0.09$
= $0.814 + 0.15 \pm 0.108$
= 1.07 or 0.856 N/mm² (no tension) (12.24)

In this case also the severe loading condition appears to be (12.17).

- (d) Third floor
- (i) Design and imposed loads

design + imposed =
$$1.4 G_k + 1.6 Q_k$$

= $1.4 \times 94.04 + 1.6 \times 15.12$
= $131.66 + 24.19 = 155.85 \,\mathrm{kN/m}$ (12.25)
stress = $(131.66 \times 10^3)/(102.5 \times 10^3)$
+ $(24.19 \times 10^3)/(102.5 \times 10^3)$
= $1.28 + 0.24 = 1.52 \,\mathrm{N/mm^2}$ (12.26)

- (ii) Dead and wind loads
- Windward side

$$\begin{aligned} \text{dead} + \text{wind} &= 0.9 \, G_{\text{k}} + 1.4 \, W_{\text{k}} \\ \text{stress} &= (0.9 \times 1.28) / 1.4 - 1.4 \times 0.162 \\ &= 0.823 - 0.227 = 0.596 \, \text{N/mm}^2 \quad \text{(no tension)} \quad (12.28) \end{aligned}$$

• Leeward side

$$dead + wind = 1.4 G_k + 1.4 W_k$$
 (12.29)

stress =
$$1.28 + 0.227 = 1.51 \,\text{N/mm}^2$$
 (12.30)

(iii) Dead, live and wind loads

dead + live + wind =
$$1.2 G_k + 1.2 Q_k + 1.2 W_k$$
 (12.31)
stress = $(1.28 \times 1.2)/1.4 + (0.24 \times 1.2)/1.6 \pm 1.2 \times 0.162$
= $1.097 + 0.18 \pm 0.194$
= 1.47 or 1.08 N/mm^2 (no tension develops) (12.32)

The critical load combination is (12.25) and the load is 155.85 kN/m.

- (e) Second floor
 - (i) Design and imposed loads

design + imposed =
$$1.4 G_k + 1.6 Q_k$$

= $1.4 \times 118.72 + 1.6 \times 16.2$
= $166.2 + 25.9 = 192.10 \text{ kN/m}$ (12.33)
stress = $(1.4 \times 118.72 \times 10^3)/(102.5 \times 10^3)$
+ $(1.6 \times 16.2 \times 10^3)/(102.5 \times 10^3)$
= $1.62 + 0.25 = 1.87 \text{ N/mm}^2$ (12.34)

- (ii) Dead and wind loads
- Windward side

$$\begin{aligned} \text{dead} + \text{wind} &= 0.9\,G_k + 1.4\,W_k \\ \text{stress} &= (0.9 \times 1.62)/1.4 - (1.4 \times 0.253) \\ &= 1.04 - 0.35 = 0.69\,\text{N/mm}^2 \quad \text{(no tension)} \end{aligned} \tag{12.36}$$

Leeward side

$$dead + wind = 1.4 G_k + 1.4 W_k$$
 (12.37)

stress =
$$1.62 + 1.4 \times 0.253 = 1.97 \,\text{N/mm}^2$$
 (12.38)

(iii) Dead, imposed and wind loads

dead + imposed + wind =
$$1.2 G_k + 1.2 Q_k + 1.2 W_k$$
 (12.39)
stress = $(1.62 \times 1.2)/1.4 + (0.25 \times 1.2)/1.6 + 1.2 \times 0.253$
= $1.39 + 0.19 \pm 0.30$
= 1.88 or 1.28 N/mm² (no tension) (12.40)